The 2+2=5 Principle and the Perils of Analytics in a Vacuum

Published Originally on Wired

Strategic decision making in enterprises playing in a competitive field requires collaborative information seeking (CIS). Complex situations require analysis that spans multiple sessions with multiple participants (that collectively represent the entire context) who spend time jointly exploring, evaluating, and gathering relevant information to drive conclusions and decisions. This is the core of the 2+2=5 principle.

Analytics in a vacuum (i.e non collaborative analytics) due to missing or partial context is highly likely to be of low quality, lacking key and relevant information and fraught with incorrect assumptions. Other characteristics of non collaborative analytics is the usage of general purpose systems and tools like IM and email that are not designed for analytics. These tools lead to enterprises drowning in a sea of spreadsheets, context lost across thousands of IMs and email and an outcome that is guaranteed to be sub optimal.

A common but incorrect approach to collaborative analytics is to think of it as a post analysis activity. This is the approach to collaboration for most analytics and BI products. Post analysis publishing of results and insights is very important however, pre-publishing collaboration plays a key role in ensuring that the generated results are accurate, informative and relevant. Analysis that terminates at the publishing point has a very short half life.

Enterprises need to think of analysis as a living and breathing story that gets bigger over time as more people collaborate and lead to more data, new data, disparate data leads to the inclusion of more context negating incorrect assumptions, missing or low quality data issues and incorrect semantical understanding of data.

Here are the most common pitfalls that we have observed, of analytics carried out in a vacuum.

Wasted resources. If multiple teams or employees are seeking the same information or attempting to solve the same analytical problem, a non collaborative approach leads to wasted resources and suboptimal results.

Collaboration can help the enterprise streamline and divide and conquer the problem more efficiently and faster with lower time and manpower. Deconstructing an analytical hypothesis into smaller questions and distributing them across multiple employees leads to faster results.

Silo’ed analysis and conclusions. If results of analysis, insights and decisions are not shared systematically across the organization, enterprises face a loss of productivity. This lack of context between employees tasked with the same goals causes organizational misalignment and lack of coherence in strategy.

Enterprises need to ensure that there is common understanding of key data driven insights that are driving organizational strategy. In addition, the process to arrive at these insights should be transparent and repeatable, assumptions made should be clearly documented and a process/mechanism to challenge or question interpretations should be defined and publicized.

Assumptions and biases. Analytics done in a vacuum is hostage the the personal beliefs, assumptions, biases, clarity of purpose and the comprehensiveness of the context in the analyzer’s mind. Without collaboration, such biases remain uncorrected and lead to flawed foundations for strategic decisions.

A process around and freedom to challenge, inspect and reference key interpretation and analytical decisions made en route to the insight is critical for enterprises to enable and proliferate high quality insights in the organization.

Drive-by analysis. When left unchecked with top down pressure to use analytics to drive strategic decision making, enterprises see an uptake in what we call “drive-by analysis.” In this case, employees jump in to their favorite analytical tool, run some analysis to support their argument and publish these results.

This behavior leads to another danger of analytics without collaboration. These can be instances where users, without full context and understanding of of the data, semantics etc perform analysis to make critical decisions. Without supervision, these analytics can lead the organization down the wrong path. Supervision, fact checking and corroboration are needed to ensure that correct decisions are made.

Arbitration. Collaboration without a process for challenge, arbitration and an arbitration authority is often found to be, almost always at a later point in time when it is too late, littered with misinterpretations and factually misaligned or deviated from strategic patterns identified in the past.

Subject matter experts or other employees with the bigger picture, knowledge and understanding of the various moving parts of the organization need to, at every step of the analysis, verify and arbitrate on assumptions and insights before these insights are disseminated across the enterprise and used to affect strategic change.

Collaboration theory has proven that information seeking in complex situations is better accomplished through active collaboration. There is a trend in the analytics industry to think of collaborative analytics as a vanity feature and simple sharing of results is being touted as collaborative analytics. However, collaboration in analytics requires a multi pronged strategy with key processes and a product that delivers those capabilities, namely an investment in processes to allow arbitration, fact checking, interrogation and corroboration of analytics; and an investment in analytical products that are designed and optimized for collaborative analytics.