4 Strategies for Making Your Product ‘Smarter’

Originally Published on Entrepreneur.com

“Smart” is the dominant trend in the area of entrepreneurship and innovation. In recent times, a plethora of new products have arrived that make an existing product “smarter” by incorporating sensors, connecting the product to their backend or adding intelligence in the product. Reimagining existing products to be smarter and better for the end user is a gold mine for innovation. Here are four ways to rethink your products and make them smarter.

1. Understand user intent and motivations.

Make your products smarter by making it listen and understand the intent of your user. What is the user trying to do at a given time or at a given location on a specific channel? By listening for signals that motivate the usage of your product, and accounting for how variations in these signals change how your product is used, you can predict and influence how your product should adjust to better serving the end user.

For example, a smart refrigerator can detect the contents, match it against the required ingredients for a decided dinner menu and remind the user to restock a certain missing ingredient.

2. Reach users at the right time.

You can make your products smarter by reaching the user at the right time with the right message, even if the user is not using the product at a given point in time. Making the product aware of the user’s environment offers the opportunity to craft a personalized message to enhance the user experience. You can then motivate and influence the user to use the product at the opportune time in the manner that is most beneficial for both the user and the product.

For example, a smart app can detect the user’s location in a particular grocery aisle and alert them an item they need to replace is on sale.

3. Enable good decisions.

Smart products help the user make the best decisions. By understanding the user’s context and their current environment, you can suggest alternatives, recommend choices or simply notify them of changes in their environment they might otherwise not have noticed. This capability enables the user to make informed choices and decisions, thus enhancing their experience and satisfaction from the product.

For example, by integrating traffic signals in a navigation system, the user can be notified of alternate routes when there are problems in their usual route.

4. Enhance user experience.

You can make your products smarter by enhancing the user’s experience, regardless of where they are in their journey with your product. If they are a new user, your product should help them onboard. If they are an active user, your product should make them more productive. If they are a dissatisfied user, your product should detect their dissatisfaction and offer the appropriate support and guidance to help them recover. In parallel, the product should learn from their situation and use this feedback in redesigning or refactoring the product.

For example, a product company that performs sentiment analysis on their twitter stream is able to swiftly detect user discontent and feed that into their support ticketing system for immediate response and follow up.

The ability to collect telemetry of how your product is being used, use sensors to detect the environment in which it is being used and use customer usage history in the backend to understand user intent has the potential to reinvigorate your existing products to be smarter and more beneficial for their users. Similarly, reimagining or innovating using the above principles offers entrepreneurs the opportunity to disrupt current products and markets and ride the “smart” wave to success.

A Blueprint for Digital Partnerships: How Data Analysis Expands Your Customer Base

Originally Published on Wired

Everyone and everything seems to be vying for customers’ attention these days.

Attracting and keeping the interest of existing customers — let alone acquiring new ones — is tricky for most enterprises. Modern consumers have many choices in how they spend their time, attention, and money. This makes it particularly important for businesses to be constantly on the look out for new ways to engage and retain their customers.

One powerful way to aid enterprises in this search is cross-enterprise “customer sharing” via symbiotic digital partnerships. Enterprises have long tried to upsell and cross sell new products and services to existing customers. But they can now extend these tactics through digital partnerships with other enterprises. The key difference is that the cross selling and upselling happens in a meticulous, targeted manner to the partner’s customers, through the use of big data analysis and targeted and personalized advertising.

If approached correctly, such digital partnerships provide mutual, significant benefits for all parties: not only the digital partners, but the customers, too.

Customer Retention

For an enterprise’s existing users, this kind of partnership offers enhanced products and services that lead to a richer, more engaged customer experience. This, in turn, leads to an increased likelihood of customer retention, as the customer receives targeted and relevant offers and doesn’t need to look outside the partnership for required products and services.

Here’s an example: Users who receive targeted offers to purchase better health insurance while claiming health care cost deductions on their tax return are more likely to return to their online tax filing software. They can also expect a better offer from the insurance company, because it has access to a richer profile of the user.

This partnership model offers a cost-effective way to grow an enterprise’s user base by acquiring new customers that have been pre-validated with fully defined user models and a history of high value and sustained transactions.

Cross-Product Preference Segmentation

Enterprises need to seek digital partners with similarly segmented customer bases, such that all users in a segment share preferences for the products of all the businesses in a digital partnership. This is where data analysis enters the picture.

Cross-product preference segments are identified by observing and segmenting users by products and services that are used in close proximity to each other, both spatially and temporally. To prepare for cross-product preference segmentation, enterprises need to:

  • Collect product usage data about each customer, including demographic and interest-based attributes
  • Standardize the format of product usage data; for example, user name, age, gender, interests, product used, and revenue generated
  • Expose customer product usage to partners through a data API
  • Anonymize personally identifiable information (PII) when needed
  • Import product usage data from other partners and find intersections of product usage across different data sets
  • Export “intersection outputs” to generate segments in which each user uses products from several enterprises
  • Sort segments by average revenue generated per user

Caution: Don’t Upset Your Customers

Enterprises should enter digital partnerships to cross sell and upsell to each others’ customers, but this comes with a warning: they should be careful not to spam their most valuable and engaged users. To prevent this, enterprises should carefully segment their users by their stage in the customer lifecycle.

A company also needs to ensure that the sharing of users for up-sell and cross-sell opportunities is calibrated appropriately and leads to a partnership of equals. This also serves as a quality check on the process — enterprises need to ensure that they don’t create poor user experiences because of the actions of another enterprise in the digital partnership.

The goal is to enhance the experience of your most valuable users, not to diminish it.

A map of the customer lifecycle stages can be generated by first capturing all instances of user engagement with a product or service and then defining business rules that get applied by a big data processing engine.

The business rules define a set of activities and, more broadly, behaviors for every stage in the customer lifecycle such as new users, active users, engaged users, and abandoned users.

Complement Your Products

An enterprise needs to understand which products or services are complementary to its own. In other words, which products and services can enhance or even complete the experience of the user? This analysis is called the “product adjacency list,” and is defined for each user segment. This qualitative analysis returns useful information to inform potential partnership discussions.

Forge the Digital Partnership

The purpose of the digital partnership is to enable enterprises to share access to high-value, engaged users to solve their customer acquisition problem and offer such users highly targeted and enhanced products and services.

However, successful partnerships should follow several key guidelines:

  1. Equitable exchange of access – A partnership of equals mandates access to each other’s users, where the “shared” users are of equally high quality, type, value, and lifecycle stage.
  2. Stringent quality control – Access to a partner’s users needs to be tracked and verified to ensure there is no inappropriate usage
  3. Data APIs and governance – Access to usage data should be exposed as an API to ensure easy experimentation and adoption. Access to the user’s views of the partner’s offers should also be API accessible.
  4. Data-validated upsells and cross sells – Up-sells and cross-sells delivered to a partner’s customer base should be validated as being either on the user’s product adjacency list or in the supplementary or complementary product graph of the enterprise.
  5. User feedback loop – Users should easily be able to opt out, suspend, or provide feedback on the quality of the up-sells and cross sells to enable the partnership to improve and become increasingly beneficial for both parties.

Symbiotic digital partnerships that offer users better products, services, and complete experiences and don’t leave users feeling spammed or violated offer a sure path to success for both participants in a digital partnership.

When driven by APIs, partners can experiment and innovate; they can create mash-up products and services, exchange user data securely and easily, and benefit from deep analysis of user behavior. This enables these partner companies to delight their customers while making their products and services sticky and driving mutual business value.

Read more: http://insights.wired.com/profiles/blogs/a-blueprint-for-symbiotic-digital-partnerships-how-big-data#ixzz3KbgcEvua
Follow us: @Wiredinsights on Twitter | InnovationInsights on Facebook

The Importance of Making Your Big Data System Insightful

Originally Published on Wired

 

With all the emphasis these days that’s placed on combing through the piles of potentially invaluable data that resides within an enterprise, it’s possible for a business to lose sight of the need to turn the discoveries generated by data analysis into valuable actions.

Sure, insights and observations that arise from data analysis are interesting and compelling, but they really aren’t worth much unless they can be converted into some kind of business value, whether it’s, say, fine tuning the experience of customers who are considering abandoning your product or service, or modeling an abuse detection system to block traffic from malicious users.

Digging jewels like these out of piles of enterprise data might be viewed by some as a mysterious art, but it’s not. It’s a process of many steps, considerations, and potential pitfalls, but it’s important for business stakeholders to have a grip on how the process works and the strategy considerations that go into data analysis. You’ve got to know the right questions to ask. Otherwise, there’s a risk that data science stays isolated, instead of evolving into business science.

The strategic considerations include setting up an “insights pipeline,” which charts the path from hypothesis to insight and helps ensure agility in detecting trends, building new products, and adjusting business processes; ensuring that the analytical last mile, which spans the gap from analysis to a tangible business action, is covered quickly; building a “data first” strategy that lays the groundwork for new products to produce valuable data; and understanding how partnerships can help enterprises put insights to work to improve user experiences.

The Insights Pipeline

You can visualize an insights pipeline as a kind of flow chart that encompasses the journey from a broad business goal, question or hypothesis to a business insight.

The questions could look something like this: Why are we losing customers in the European market? Or, how can revenue from iOS users be increased? This kind of query is the first step in open-ended data exploration, which, as the name implies, doesn’t usually include deadlines or specific expectations, because they can suppress the serendipity that is a key part of the open-ended discovery process.

Data scientists engage in this kind of exploration to uncover business-critical insights, but they might not know what shapes these insights will take when they begin their research. These insights are then presented to business stakeholders, who interpret the results and put them to use in making strategic or tactical decisions.

The broad nature of open-ended exploration carries potential negatives. Because of the lack of refinement in the query, the insights generated might be unusable, not new, or even worthless, leading to low or no ROI. Without specific guidance, a data scientist could get lost in the weeds.

Closed-loop data exploration, on the other hand, is much more refined and focused on a very focused business function or question. For example, a data scientist might pursue this: Are there any customers who do more than $100 of business each day with an online business? If so, flag them as “very important customers” so they can receive special offers. There is very little ambiguity in the query.

In the insights pipeline, successful open-ended explorations can eventually be promoted to closed loop dashboards, once business stakeholders ratify the results.

Closed-loop analysis implements systems based on models or algorithms that slot into business processes and workflow systems. As the example above suggests, these kinds of questions enable fast, traffic-based decision-making and end-user servicing. They also don’t add development costs once they are put in place.

But the very specificity of the queries that define closed-loop data analysis can produce insights of limited value. And once the query is set up, the possibility of “insights staleness” arises. Revisiting the “very important customer” example, what if inflation makes the $100-per-day customer less valuable? The insight becomes outdated; this highlights the need to consistently renew and verify results.

This illustrates the importance of consistently retuning the model, and, sometimes, forming new questions or hypotheses to plug back into an open-ended exploration. For example, a system that filters incoming emails for spam can quickly become outdated as spammers change tactics or use new technologies. A closed-loop system like this often needs to be revamped entirely to reflect changes in smaller behavior.

The Analytical Last Mile

Making decisions is one of the most challenging parts of doing business. In IT, employees are very comfortable delivering reports or assembling dashboards. But deciding on an action plan based upon that information isn’t easy, and lots of insights but few decisions introduces a lag time that in turn erodes business value.

The analytical last mile represents the time and effort required to use analytics insights to actually improve the state of a businesses. You might have invested heavily in big data technologies and produced all kinds of dashboards and reports, but this adds up to very little if interesting observations aren’t converted into action.

The value of analytics and a data-driven culture is only realized when the analytical last mile is covered quickly and efficiently. The inability to do this often results in lost business efficiency and unrealized business value.

More often than not, human latency is to blame. It’s defined as the time it takes employees to collect the required information, perform analysis, and disseminate the resulting insight to decision makers, and, then, the time it takes decision makers to collaborate and decide on a course of action.

Covering the analytical last mile efficiently requires an investment in and emphasis on setting up streamlined data collection, analysis and decision-making processes.

A “Data First” Strategy

When you define, design, and introduce a new product or service, data generation, collection and analysis, and product optimization might be the last thing you’re thinking of. It should be the first.

A “data first” strategy ensures that the right kind of technology is in place to deliver insights that can improve the end user experience. Thinking through what kinds of user data might be collected ensures that the enterprise isn’t caught off guard when the new product or service begins to gain momentum.

Some of the data you should think about gathering includes:

  • Data generated by user actions and interactions, such monetary transactions, information requests, and navigation
  • Data that defines the profile attributes of the user, including information available from the user, the enterprise, or enterprise partners
  • Contextual data about the user’s social network activity triggered by the product or service, the user’s location in relation to use of the product or service, or the channels through which the product or service is being used or accessed

Instead of losing critical time scrambling to set up methodologies to gather this data, you’ll be prepared to do some fine-tuning to the product to boost the end user’s experience.

Partnerships

A lot of skills and capabilities are required to take a data-driven effort to optimize the user experience and turn that into an actual, tangible improvement in your customer’s experience and, ultimately, boost the enterprise’s bottom line.
Many of these skills are not traditionally part of a business’ core competencies, so partnerships are a great way to bring in outside expertise to help polish the customer experience. Some areas where enterprises look to partners for help include: the ability to reach customers with content, offers, deals, and ads across multiple channels, devices or platforms; the ability to access user transaction history across multiple services and products; and the capability to know users’ locations at any point in time.

There’s a reason that big data analysis has become such a catchphrase. It’s an amazingly powerful tool that can improve user experiences and boost the bottom line.

But it’s critical that business stakeholders have an awareness of the process, think about the right strategic considerations, and realize the importance of moving quickly and decisively once insights are delivered. Otherwise, it’s all too easy for a business to get mired in data science, instead of transforming a valuable insight into an even more valuable action.

3 Signs That Your Partner Program Is Going Belly Up

Published Originally on Entrepreneur.com

While launching partner programs can offer many benefits to businesses, if not set up correctly, they can also spell disaster.

For those a little confused about what exactly a partner program entails, it is basically a formal program and process operated and managed by a business with the goal to attract, engage and retain other partners. For example, Google offers an advertising service to publishers and advertisers. The ultimate goal of these programs is to increase revenue generated from these partners. In addition to the services offered to partners (i.e. advertising platform), a partner program includes trainings, tools, support, documentation, help and strategic services to empower partners to succeed.

For a program to be considered a success, there should be a strong partner membership, robust usage of the services offered and large stream of revenue generated per partner.

If your partner program is struggling to stand on its legs, you may be making one these three following mistakes:

1. Your return on investment is low or not being measured.

Without clear metrics and goals, most partner projects end up getting defunded as the return on investment (ROI) is simply not there (or not measured) to justify continued investment.

Another symptom of a flawed partner strategy is a misalignment of expectations between senior management/executive sponsors of the platform and the actual implementers. If ROI does not match the expectations of the sponsor, a partner program can be classified as a failure.

To ensure everyone is on the same page when it comes to ROI, determine metrics right off the bat. To do so, companies need to know exactly what metric is important to them and to their partners. For example, the rate at which partners sign up or the time it takes for a partner to go from onboarding to generating revenue might be relevant metrics. Companies need to understand and establish the baseline for these metrics and then measure the efficacy of their program by ensuring the metrics move in the right direction.

Once you have figured out metrics, make sure your platform can deliver. A well-designed service platform makes it easier and cheaper for other teams in the enterprise to go to market with new services, products. If the cost to enhance and expand the platform is not getting smaller for each additional new service, your program might be in trouble.

2. You have built an ineffective service platform.

If your partner program has struggled to attract, retain and enable partners to develop and grow their businesses, it is an ineffective service platform.

To fix this, you have to make your platform sticky, meaning partners cannot succeed without your services. If this isn’t the case, you have a serious problem.

For example, if your partners are signing up to work with both you and your competitors, it might be because they consider you a risky investment. If your partners build only a single one-off application on your platform, your program is probably not on their investment roadmap and growth strategy.

One company that does offer a sticky program is Microsoft’s BizSpark. Initially, startups can build on the platform for free but after a certain time frame – and after a lot of resources have been built on it – Microsoft starts charging. And this creates a huge revenue stream for the company, as what startup is going to want to jump off the BizSpark platform and start over?

3. Your monetization strategy is all wrong.

If you are not making money off of your partner program or generating leverage from its usage, your monetization strategy needs to change.

The key to successful monetization is identifying and expose only products and services that have a high demand from partners. For example, a great tactic may be to survey your potential partners or analyze the needs of your targeted partner persona. This will inform you about the matching subset of services in your arsenal that offer enough value to the partners that they will pay for it.

If you not thinking about your program monetization by investing in marketing, pricing optimization, adoption and growth or performance management of the platform, you are probably stuck with a stagnant partner program with sluggish usage and high churn rate. A successfully monetized partner program requires that it be constantly analyzed and optimized.

If your partner program is an IT initiative and does not have a business team behind it thinking about its ROI, effectiveness and monetization, it will not only struggle to get adopted but also starve for investment dollars from your executive sponsors and revenue dollars from your partners. As these investment dollars dry up, the partner program that runs on top of the platform will be considered a failure and will eventually shrink, get branded as a failure and cease to exist.

The key to success with a partner program strategy begins with carefully selecting what your program offers, convincing and onboarding partners and doing everything and anything to make them successful. Once that is the case, you can monetize the partner program and as you open up new revenue streams for your enterprise, see the program grow, expand and become a line of business.